版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
2023年中考數(shù)學(xué)模擬試卷注意事項:1.答題前,考生先將自己的姓名、準(zhǔn)考證號碼填寫清楚,將條形碼準(zhǔn)確粘貼在條形碼區(qū)域內(nèi)。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1.一個不透明的布袋里裝有5個只有顏色不同的球,其中2個紅球、3個白球.從布袋中一次性摸出兩個球,則摸出的兩個球中至少有一個紅球的概率是()A. B. C. D.2.在﹣3,0,4,這四個數(shù)中,最大的數(shù)是()A.﹣3 B.0 C.4 D.3.有以下圖形:平行四邊形、矩形、等腰三角形、線段、菱形,其中既是軸對稱圖形又是中心對稱圖形的有()A.5個B.4個C.3個D.2個4.在實數(shù),,,中,其中最小的實數(shù)是()A. B. C. D.5.如圖,半徑為1的圓O1與半徑為3的圓O2相內(nèi)切,如果半徑為2的圓與圓O1和圓O2都相切,那么這樣的圓的個數(shù)是()A.1 B.2 C.3 D.46.如圖,在平面直角坐標(biāo)系中,點A在x軸的正半軸上,點B的坐標(biāo)為(0,4),將△ABO繞點B逆時針旋轉(zhuǎn)60°后得到△A'BO',若函數(shù)y=(x>0)的圖象經(jīng)過點O',則k的值為()A.2 B.4 C.4 D.87.下列博物院的標(biāo)識中不是軸對稱圖形的是()A. B.C. D.8.由一些大小相同的小正方體組成的幾何體的俯視圖如圖所示,其中正方形中的數(shù)字表示在該位置上的小正方體的個數(shù),那么,這個幾何體的左視圖是()A. B. C. D.9.下列分子結(jié)構(gòu)模型的平面圖中,既是軸對稱圖形又是中心對稱圖形的有()A.1個 B.2個 C.3個 D.4個10.如圖是一個由4個相同的正方體組成的立體圖形,它的左視圖為()A. B. C. D.11.如圖是一個放置在水平桌面的錐形瓶,它的俯視圖是()A. B. C. D.12.下列因式分解正確的是A. B.C. D.二、填空題:(本大題共6個小題,每小題4分,共24分.)13.把球放在長方體紙盒內(nèi),球的一部分露出盒外,其截面如圖,已知EF=CD=80cm,則截面圓的半徑為cm.14.滿足的整數(shù)x的值是_____.15.將一個含45°角的三角板,如圖擺放在平面直角坐標(biāo)系中,將其繞點順時針旋轉(zhuǎn)75°,點的對應(yīng)點恰好落在軸上,若點的坐標(biāo)為,則點的坐標(biāo)為____________.16.將一張矩形紙片折疊成如圖所示的圖形,若AB=6cm,則AC=cm.17.如圖,等邊三角形的頂點A(1,1)、B(3,1),規(guī)定把等邊△ABC“先沿x軸翻折,再向左平移1個單位”為一次變換,如果這樣連續(xù)經(jīng)過2018次變換后,等邊△ABC的頂點C的坐標(biāo)為_____.18.如圖,在等腰中,,點在以斜邊為直徑的半圓上,為的中點.當(dāng)點沿半圓從點運(yùn)動至點時,點運(yùn)動的路徑長是________.三、解答題:(本大題共9個小題,共78分,解答應(yīng)寫出文字說明、證明過程或演算步驟.19.(6分)如圖,△ABC的頂點坐標(biāo)分別為A(1,3)、B(4,1)、C(1,1).在圖中以點O為位似中心在原點的另一側(cè)畫出△ABC放大1倍后得到的△A1B1C1,并寫出A1的坐標(biāo);請在圖中畫出△ABC繞點O逆時針旋轉(zhuǎn)90°后得到的△A1B1C1.20.(6分)如圖,一次函數(shù)y=kx+b的圖象與反比例函數(shù)y=的圖象交于點A(-3,m+8),B(n,-6)兩點.求一次函數(shù)與反比例函數(shù)的解析式;求△AOB的面積.21.(6分)如圖,MN是一條東西方向的海岸線,在海岸線上的A處測得一海島在南偏西32°的方向上,向東走過780米后到達(dá)B處,測得海島在南偏西37°的方向,求小島到海岸線的距離.(參考數(shù)據(jù):tan37°=cot53°≈0.755,cot37°=tan53°≈1.327,tan32°=cot58°≈0.625,cot32°=tan58°≈1.1.)22.(8分)如圖,梯形ABCD中,AD∥BC,DC⊥BC,且∠B=45°,AD=DC=1,點M為邊BC上一動點,聯(lián)結(jié)AM并延長交射線DC于點F,作∠FAE=45°交射線BC于點E、交邊DCN于點N,聯(lián)結(jié)EF.(1)當(dāng)CM:CB=1:4時,求CF的長.(2)設(shè)CM=x,CE=y,求y關(guān)于x的函數(shù)關(guān)系式,并寫出定義域.(3)當(dāng)△ABM∽△EFN時,求CM的長.23.(8分)拋物線y=﹣x2+bx+c(b,c均是常數(shù))經(jīng)過點O(0,0),A(4,4),與x軸的另一交點為點B,且拋物線對稱軸與線段OA交于點P.(1)求該拋物線的解析式和頂點坐標(biāo);(2)過點P作x軸的平行線l,若點Q是直線上的動點,連接QB.①若點O關(guān)于直線QB的對稱點為點C,當(dāng)點C恰好在直線l上時,求點Q的坐標(biāo);②若點O關(guān)于直線QB的對稱點為點D,當(dāng)線段AD的長最短時,求點Q的坐標(biāo)(直接寫出答案即可).24.(10分)我市某中學(xué)藝術(shù)節(jié)期間,向全校學(xué)生征集書畫作品.九年級美術(shù)王老師從全年級14個班中隨機(jī)抽取了4個班,對征集到的作品的數(shù)量進(jìn)行了分析統(tǒng)計,制作了如下兩幅不完整的統(tǒng)計圖.王老師采取的調(diào)查方式是(填“普查”或“抽樣調(diào)查”),王老師所調(diào)查的4個班征集到作品共件,其中b班征集到作品件,請把圖2補(bǔ)充完整;王老師所調(diào)查的四個班平均每個班征集作品多少件?請估計全年級共征集到作品多少件?如果全年級參展作品中有5件獲得一等獎,其中有3名作者是男生,2名作者是女生.現(xiàn)在要在其中抽兩人去參加學(xué)??偨Y(jié)表彰座談會,請直接寫出恰好抽中一男一女的概率.25.(10分)如圖,在平行四邊形ABCD中,E、F是對角線BD上的兩點,且BF=DE.求證:AE∥CF.26.(12分)如圖,矩形擺放在平面直角坐標(biāo)系中,點在軸上,點在軸上,.(1)求直線的表達(dá)式;(2)若直線與矩形有公共點,求的取值范圍;(3)直線與矩形沒有公共點,直接寫出的取值范圍.27.(12分)如圖,正方形ABCD中,BD為對角線.(1)尺規(guī)作圖:作CD邊的垂直平分線EF,交CD于點E,交BD于點F(保留作圖痕跡,不要求寫作法);(2)在(1)的條件下,若AB=4,求△DEF的周長.
參考答案一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1、D【解析】
畫出樹狀圖得出所有等可能的情況數(shù),找出恰好是兩個紅球的情況數(shù),即可求出所求的概率.【詳解】畫樹狀圖如下:一共有20種情況,其中兩個球中至少有一個紅球的有14種情況,因此兩個球中至少有一個紅球的概率是:.故選:D.【點睛】此題考查了列表法與樹狀圖法,用到的知識點為:概率=所求情況數(shù)與總情況數(shù)之比.2、C【解析】試題分析:根據(jù)實數(shù)的大小比較法則,正數(shù)大于0,0大于負(fù)數(shù),兩個負(fù)數(shù)相比,絕對值大的反而?。虼?,在﹣3,0,1,這四個數(shù)中,﹣3<0<<1,最大的數(shù)是1.故選C.3、C【解析】矩形,線段、菱形是軸對稱圖形,也是中心對稱圖形,符合題意;等腰三角形是軸對稱圖形,不是中心對稱圖形,不符合題意;平行四邊形不是軸對稱圖形,是中心對稱圖形,不符合題意.共3個既是軸對稱圖形又是中心對稱圖形.故選C.4、B【解析】
由正數(shù)大于一切負(fù)數(shù),負(fù)數(shù)小于0,正數(shù)大于0,兩個負(fù)數(shù)絕對值大的反而小,把這四個數(shù)從小到大排列,即可求解.【詳解】解:∵0,-2,1,中,-2<0<1<,
∴其中最小的實數(shù)為-2;
故選:B.【點睛】本題考查了實數(shù)的大小比較,關(guān)鍵是掌握:正數(shù)大于0,負(fù)數(shù)小于0,正數(shù)大于一切負(fù)數(shù),兩個負(fù)數(shù)絕對值大的反而?。?、C【解析】分析:過O1、O2作直線,以O(shè)1O2上一點為圓心作一半徑為2的圓,將這個圓從左側(cè)與圓O1、圓O2同時外切的位置(即圓O3)開始向右平移,觀察圖形,并結(jié)合三個圓的半徑進(jìn)行分析即可得到符合要求的圓的個數(shù).詳解:如下圖,(1)當(dāng)半徑為2的圓同時和圓O1、圓O2外切時,該圓在圓O3的位置;(2)當(dāng)半徑為2的圓和圓O1、圓O2都內(nèi)切時,該圓在圓O4的位置;(3)當(dāng)半徑為2的圓和圓O1外切,而和圓O2內(nèi)切時,該圓在圓O5的位置;綜上所述,符合要求的半徑為2的圓共有3個.故選C.點睛:保持圓O1、圓O2的位置不動,以直線O1O2上一個點為圓心作一個半徑為2的圓,觀察其從左至右平移過程中與圓O1、圓O2的位置關(guān)系,結(jié)合三個圓的半徑大小即可得到本題所求答案.6、C【解析】
根據(jù)題意可以求得點O'的坐標(biāo),從而可以求得k的值.【詳解】∵點B的坐標(biāo)為(0,4),
∴OB=4,
作O′C⊥OB于點C,
∵△ABO繞點B逆時針旋轉(zhuǎn)60°后得到△A'BO',
∴O′B=OB=4,
∴O′C=4×sin60°=2,BC=4×cos60°=2,
∴OC=2,
∴點O′的坐標(biāo)為:(2,2),
∵函數(shù)y=(x>0)的圖象經(jīng)過點O',
∴2=,得k=4,
故選C.【點睛】本題考查了反比例函數(shù)圖象上點的坐標(biāo)特征、坐標(biāo)與圖形的變化,解題的關(guān)鍵是利用數(shù)形結(jié)合的思想和反比例函數(shù)的性質(zhì)解答.7、A【解析】
如果一個圖形沿一條直線折疊,直線兩旁的部分能夠互相重合,這個圖形叫做軸對稱圖形,這條直線叫做對稱軸,對題中選項進(jìn)行分析即可.【詳解】A、不是軸對稱圖形,符合題意;B、是軸對稱圖形,不合題意;C、是軸對稱圖形,不合題意;D、是軸對稱圖形,不合題意;故選:A.【點睛】此題考查軸對稱圖形的概念,解題的關(guān)鍵在于利用軸對稱圖形的概念判斷選項正誤8、A【解析】從左面看,得到左邊2個正方形,中間3個正方形,右邊1個正方形.故選A.9、C【解析】
根據(jù)軸對稱圖形與中心對稱圖形的概念求解.【詳解】解:A是軸對稱圖形,不是中心對稱圖形;B,C,D是軸對稱圖形,也是中心對稱圖形.故選:C.【點睛】掌握中心對稱圖形與軸對稱圖形的概念:軸對稱圖形:如果一個圖形沿著一條直線對折后兩部分完全重合,這樣的圖形叫做軸對稱圖形;中心對稱圖形:在同一平面內(nèi),如果把一個圖形繞某一點旋轉(zhuǎn)180°,旋轉(zhuǎn)后的圖形能和原圖形完全重合,那么這個圖形就叫做中心對稱圖形.10、B【解析】
根據(jù)左視圖的定義,從左側(cè)會發(fā)現(xiàn)兩個正方形摞在一起.【詳解】從左邊看上下各一個小正方形,如圖故選B.11、B【解析】
根據(jù)俯視圖是從上面看到的圖形解答即可.【詳解】錐形瓶從上面往下看看到的是兩個同心圓.故選B.【點睛】本題考查三視圖的知識,解決此類圖的關(guān)鍵是由三視圖得到相應(yīng)的平面圖形.從正面看到的圖是正視圖,從上面看到的圖形是俯視圖,從左面看到的圖形是左視圖,能看到的線畫實線,被遮擋的線畫虛線.12、D【解析】
直接利用提取公因式法以及公式法分解因式,進(jìn)而判斷即可.【詳解】解:A、,無法直接分解因式,故此選項錯誤;B、,無法直接分解因式,故此選項錯誤;C、,無法直接分解因式,故此選項錯誤;D、,正確.故選:D.【點睛】此題主要考查了提取公因式法以及公式法分解因式,正確應(yīng)用公式是解題關(guān)鍵.二、填空題:(本大題共6個小題,每小題4分,共24分.)13、1【解析】
過點O作OM⊥EF于點M,反向延長OM交BC于點N,連接OF,設(shè)OF=r,則OM=80-r,MF=40,然后在Rt△MOF中利用勾股定理求得OF的長即可.【詳解】過點O作OM⊥EF于點M,反向延長OM交BC于點N,連接OF,設(shè)OF=x,則OM=80﹣r,MF=40,在Rt△OMF中,∵OM2+MF2=OF2,即(80﹣r)2+402=r2,解得:r=1cm.故答案為1.14、3,1【解析】
直接得出2<<3,1<<5,進(jìn)而得出答案.【詳解】解:∵2<<3,1<<5,∴的整數(shù)x的值是:3,1.故答案為:3,1.【點睛】此題主要考查了估算無理數(shù)的大小,正確得出接近的有理數(shù)是解題關(guān)鍵.15、【解析】
先求得∠ACO=60°,得出∠OAC=30°,求得AC=2OC=2,解等腰直角三角形求得直角邊為,從而求出B′的坐標(biāo).【詳解】解:∵∠ACB=45°,∠BCB′=75°,
∴∠ACB′=120°,
∴∠ACO=60°,
∴∠OAC=30°,
∴AC=2OC,
∵點C的坐標(biāo)為(1,0),
∴OC=1,
∴AC=2OC=2,
∵△ABC是等腰直角三角形,∴B′點的坐標(biāo)為【點睛】此題主要考查了旋轉(zhuǎn)的性質(zhì)及坐標(biāo)與圖形變換,同時也利用了直角三角形性質(zhì),首先利用直角三角形的性質(zhì)得到有關(guān)線段的長度,即可解決問題.16、1.【解析】試題分析:如圖,∵矩形的對邊平行,∴∠1=∠ACB,∵∠1=∠ABC,∴∠ABC=∠ACB,∴AC=AB,∵AB=1cm,∴AC=1cm.考點:1軸對稱;2矩形的性質(zhì);3等腰三角形.17、(﹣2016,+1)【解析】
據(jù)軸對稱判斷出點C變換后在x軸上方,然后求出點C縱坐標(biāo),再根據(jù)平移的距離求出點A變換后的橫坐標(biāo),最后寫出即可.【詳解】解:∵△ABC是等邊三角形AB=3﹣1=2,∴點C到x軸的距離為1+2×=+1,橫坐標(biāo)為2,∴C(2,+1),第2018次變換后的三角形在x軸上方,點C的縱坐標(biāo)為+1,橫坐標(biāo)為2﹣2018×1=﹣2016,所以,點C的對應(yīng)點C′的坐標(biāo)是(﹣2016,+1)故答案為:(﹣2016,+1)【點睛】本題考查坐標(biāo)與圖形變化,平移和軸對稱變換,等邊三角形的性質(zhì),讀懂題目信息,確定出連續(xù)2018次這樣的變換得到三角形在x軸上方是解題的關(guān)鍵.18、π【解析】
取的中點,取的中點,連接,,,則,故的軌跡為以為圓心,為半徑的半圓弧,根據(jù)弧長公式即可得軌跡長.【詳解】解:如圖,取的中點,取的中點,連接,,,∵在等腰中,,點在以斜邊為直徑的半圓上,∴,∵為的中位線,∴,∴當(dāng)點沿半圓從點運(yùn)動至點時,點的軌跡為以為圓心,為半徑的半圓弧,∴弧長,故答案為:.【點睛】本題考查了點的軌跡與等腰三角形的性質(zhì).解決動點問題的關(guān)鍵是在運(yùn)動中,把握不變的等量關(guān)系(或函數(shù)關(guān)系),通過固定的等量關(guān)系(或函數(shù)關(guān)系),解決動點的軌跡或坐標(biāo)問題.三、解答題:(本大題共9個小題,共78分,解答應(yīng)寫出文字說明、證明過程或演算步驟.19、(1)A(﹣1,﹣6);(1)見解析【解析】試題分析:(1)把每個坐標(biāo)做大1倍,并去相反數(shù).(1)橫縱坐標(biāo)對調(diào),并且把橫坐標(biāo)取相反數(shù).試題解析:解:(1)如圖,△A1B1C1為所作,A(﹣1,﹣6);(1)如圖,△A1B1C1為所作.20、(1)y=-,y=-2x-1(2)1【解析】試題分析:(1)將點A坐標(biāo)代入反比例函數(shù)求出m的值,從而得到點A的坐標(biāo)以及反比例函數(shù)解析式,再將點B坐標(biāo)代入反比例函數(shù)求出n的值,從而得到點B的坐標(biāo),然后利用待定系數(shù)法求一次函數(shù)解析式求解;(2)設(shè)AB與x軸相交于點C,根據(jù)一次函數(shù)解析式求出點C的坐標(biāo),從而得到點OC的長度,再根據(jù)S△AOB=S△AOC+S△BOC列式計算即可得解.試題解析:(1)將A(﹣3,m+8)代入反比例函數(shù)y=得,=m+8,解得m=﹣6,m+8=﹣6+8=2,所以,點A的坐標(biāo)為(﹣3,2),反比例函數(shù)解析式為y=﹣,將點B(n,﹣6)代入y=﹣得,﹣=﹣6,解得n=1,所以,點B的坐標(biāo)為(1,﹣6),將點A(﹣3,2),B(1,﹣6)代入y=kx+b得,,解得,所以,一次函數(shù)解析式為y=﹣2x﹣1;(2)設(shè)AB與x軸相交于點C,令﹣2x﹣1=0解得x=﹣2,所以,點C的坐標(biāo)為(﹣2,0),所以,OC=2,S△AOB=S△AOC+S△BOC,=×2×3+×2×1,=3+1,=1.考點:反比例函數(shù)與一次函數(shù)的交點問題.21、10【解析】試題分析:如圖:過點C作CD⊥AB于點D,在Rt△ACD中,利用∠ACD的正切可得AD=0.625CD,同樣在Rt△BCD中,可得BD=0.755CD,再根據(jù)AB=BD-CD=780,代入進(jìn)行求解即可得.試題解析:如圖:過點C作CD⊥AB于點D,由已知可得:∠ACD=32°,∠BCD=37°,在Rt△ACD中,∠ADC=90°,∴AD=CD·tan∠ACD=CD·tan32°=0.625CD,在Rt△BCD中,∠BDC=90°,∴BD=CD·tan∠BCD=CD·tan37°=0.755CD,∵AB=BD-CD=780,∴0.755CD-0.625CD=780,∴CD=10,答:小島到海岸線的距離是10米.【點睛】本題考查了解直角三角形的應(yīng)用,正確添加輔助線構(gòu)造直角三角形、根據(jù)圖形靈活選用三角函數(shù)進(jìn)行求解是關(guān)鍵.22、(1)CF=1;(2)y=,0≤x≤1;(3)CM=2﹣.【解析】
(1)如圖1中,作AH⊥BC于H.首先證明四邊形AHCD是正方形,求出BC、MC的長,利用平行線分線段成比例定理即可解決問題;(2)在Rt△AEH中,AE2=AH2+EH2=12+(1+y)2,由△EAM∽△EBA,可得,推出AE2=EM?EB,由此構(gòu)建函數(shù)關(guān)系式即可解決問題;(3)如圖2中,作AH⊥BC于H,連接MN,在HB上取一點G,使得HG=DN,連接AG.想辦法證明CM=CN,MN=DN+HM即可解決問題;【詳解】解:(1)如圖1中,作AH⊥BC于H.∵CD⊥BC,AD∥BC,∴∠BCD=∠D=∠AHC=90°,∴四邊形AHCD是矩形,∵AD=DC=1,∴四邊形AHCD是正方形,∴AH=CH=CD=1,∵∠B=45°,∴AH=BH=1,BC=2,∵CM=BC=,CM∥AD,∴=,∴=,∴CF=1.(2)如圖1中,在Rt△AEH中,AE2=AH2+EH2=12+(1+y)2,∵∠AEM=∠AEB,∠EAM=∠B,∴△EAM∽△EBA,∴=,∴AE2=EM?EB,∴1+(1+y)2=(x+y)(y+2),∴y=,∵2﹣2x≥0,∴0≤x≤1.(3)如圖2中,作AH⊥BC于H,連接MN,在HB上取一點G,使得HG=DN,連接AG.則△ADN≌△AHG,△MAN≌△MAG,∴MN=MG=HM+GH=HM+DN,∵△ABM∽△EFN,∴∠EFN=∠B=45°,∴CF=CE,∵四邊形AHCD是正方形,∴CH=CD=AH=AD,EH=DF,∠AHE=∠D=90°,∴△AHE≌△ADF,∴∠AEH=∠AFD,∵∠AEH=∠DAN,∠AFD=∠HAM,∴∠HAM=∠DAN,∴△ADN≌△AHM,∴DN=HM,設(shè)DN=HM=x,則MN=2x,CN=CM=x,∴x+x=1,∴x=﹣1,∴CM=2﹣.【點睛】本題考查了正方形的判定與性質(zhì),平行線分線段成比例定理,勾股定理,相似三角形的判定與性質(zhì),全等三角形的判定與性質(zhì).熟練運(yùn)用平行線分線段成比例定理是解(1)的關(guān)鍵;證明△EAM∽△EBA是解(2)的關(guān)鍵;綜合運(yùn)用全等三角形的判定與性質(zhì)是解(3)的關(guān)鍵.23、(1)y=﹣(x﹣)2+;(,);(2)①(﹣,)或(,);②(0,);【解析】
1)把0(0,0),A(4,4v3)的坐標(biāo)代入y=﹣x2+bx+c,轉(zhuǎn)化為解方程組即可.(2)先求出直線OA的解析式,點B坐標(biāo),拋物線的對稱軸即可解決問題.(3)①如圖1中,點O關(guān)于直線BQ的對稱點為點C,當(dāng)點C恰好在直線l上時,首先證明四邊形BOQC是菱形,設(shè)Q(m,),根據(jù)OQ=OB=5,可得方程,解方程即可解決問題.②如圖2中,由題意點D在以B為圓心5為半徑的OB上運(yùn)動,當(dāng)A,D、B共線時,線段AD最小,設(shè)OD與BQ交于點H.先求出D、H兩點坐標(biāo),再求出直線BH的解析式即可解決問題.【詳解】(1)把O(0,0),A(4,4)的坐標(biāo)代入y=﹣x2+bx+c,得,解得,∴拋物線的解析式為y=﹣x2+5x=﹣(x﹣)2+.所以拋物線的頂點坐標(biāo)為(,);(2)①由題意B(5,0),A(4,4),∴直線OA的解析式為y=x,AB==7,∵拋物線的對稱軸x=,∴P(,).如圖1中,點O關(guān)于直線BQ的對稱點為點C,當(dāng)點C恰好在直線l上時,∵QC∥OB,∴∠CQB=∠QBO=∠QBC,∴CQ=BC=OB=5,∴四邊形BOQC是平行四邊形,∵BO=BC,∴四邊形BOQC是菱形,設(shè)Q(m,),∴OQ=OB=5,∴m2+()2=52,∴m=±,∴點Q坐標(biāo)為(﹣,)或(,);②如圖2中,由題意點D在以B為圓心5為半徑的⊙B上運(yùn)動,當(dāng)A、D、B共線時,線段AD最小,設(shè)OD與BQ交于點H.∵AB=7,BD=5,∴AD=2,D(,),∵OH=HD,∴H(,),∴直線BH的解析式為y=﹣x+,當(dāng)y=時,x=0,∴Q(0,).【點睛】本題二次函數(shù)與一次函數(shù)的關(guān)系、幾何動態(tài)問題、最值問題、作輔助圓解決問題,難度較大,需積極思考,靈活應(yīng)對.24、(1)抽樣調(diào)查;12;3;(2)60;(3).【解析】試題分析:(1)根據(jù)只抽取了4個班可知是抽樣調(diào)查,根據(jù)C在扇形圖中的角度求出所占的份數(shù),再根據(jù)C的人數(shù)是5,列式進(jìn)行計算即可求出作品的件數(shù),然后減去A、C、D的件數(shù)即為B的件數(shù);(2)求出平均每一個班的作品件數(shù),然后乘以班級數(shù)14,計算即可得解;(3)畫出樹狀圖或列出圖表,再根據(jù)概率公式列式進(jìn)行計算即可得解.試題解析:(1)抽樣調(diào)查,所調(diào)查的4個班征集到作品數(shù)為:5÷=12件,B作品的件數(shù)為:12﹣2﹣5﹣2=3件,故答案為抽樣調(diào)查;12;3;把圖2補(bǔ)充完整如下:(2)王老師所調(diào)查的四個班平均每個班征集作品=12÷4=3(件),所以,估計全年級征集到參展作品:3×14=42(件);(3)畫樹狀圖如下:列表如下:
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 二零二五年度教育機(jī)構(gòu)內(nèi)部“2024版內(nèi)通辦”教育資源共享合同4篇
- 二零二五年度中小企業(yè)技術(shù)改造擔(dān)保借款合同樣本4篇
- 二零二五年度內(nèi)蒙古自治區(qū)農(nóng)牧廳農(nóng)業(yè)人才培養(yǎng)與引進(jìn)合同3篇
- 二零二五版鎳礦市場調(diào)研與信息服務(wù)合同4篇
- 2025年度標(biāo)準(zhǔn)門面租賃合同及租賃期限延長及續(xù)租條款3篇
- 2025年度苗木種植與現(xiàn)代農(nóng)業(yè)園區(qū)建設(shè)合同4篇
- 二零二五年度“農(nóng)業(yè)科技”菜園智能化溫室建設(shè)合同3篇
- 2025年度農(nóng)戶綠色農(nóng)業(yè)發(fā)展基金合同4篇
- 二零二五年度體育賽事賽事品牌合作開發(fā)與推廣勞務(wù)分包合同
- 二零二五版文化產(chǎn)業(yè)投資內(nèi)部股東全部股權(quán)轉(zhuǎn)讓與合作開發(fā)合同4篇
- 足浴技師與店內(nèi)禁止黃賭毒協(xié)議書范文
- 中國高血壓防治指南(2024年修訂版)要點解讀
- 2024-2030年中國光電干擾一體設(shè)備行業(yè)發(fā)展現(xiàn)狀與前景預(yù)測分析研究報告
- 湖南省岳陽市岳陽樓區(qū)2023-2024學(xué)年七年級下學(xué)期期末數(shù)學(xué)試題(解析版)
- 農(nóng)村自建房安全合同協(xié)議書
- 杜仲葉藥理作用及臨床應(yīng)用研究進(jìn)展
- 4S店售后服務(wù)6S管理新規(guī)制度
- 高性能建筑鋼材的研發(fā)與應(yīng)用
- 無線廣播行業(yè)現(xiàn)狀分析
- 漢語言溝通發(fā)展量表(長表)-詞匯及手勢(8-16月齡)
- 高速公路相關(guān)知識講座
評論
0/150
提交評論